资源类型

期刊论文 324

年份

2024 1

2023 46

2022 39

2021 31

2020 21

2019 16

2018 13

2017 22

2016 11

2015 19

2014 7

2013 7

2012 13

2011 13

2010 21

2009 10

2008 11

2007 6

2006 1

2005 1

展开 ︾

关键词

CCS 2

CO2利用 2

CO2封存 2

CO2捕集 2

二氧化碳 2

固体氧化物电解池 2

复合镀层 2

生物质 2

电沉积 2

碳中和 2

&alpha 1

CAD 装配模型 1

CCSS (CoCentric system studio) 1

CO 1

CO2 1

CO2 加氢 1

CO2地下埋存 1

CO2管道;离岸CCUS;海底管道;管道腐蚀;管道断裂;泄漏监测 1

CO2 EOR 1

展开 ︾

检索范围:

排序: 展示方式:

Electrochemical CO reduction to C products over CuZn intermetallic catalysts synthesized by electrodeposition

《能源前沿(英文)》 doi: 10.1007/s11708-023-0898-0

摘要: Electrocatalytic CO2 reduction (ECR) offers an attractive approach to realizing carbon neutrality and producing valuable chemicals and fuels using CO2 as the feedstock. However, the lack of cost-effective electrocatalysts with better performances has seriously hindered its application. Herein, a one-step co-electrodeposition method was used to introduce Zn, a metal with weak *CO binding energy, into Cu to form Cu/Zn intermetallic catalysts (Cu/Zn IMCs). It was shown that, using an H-cell, the high Faradaic efficiency of C2+ hydrocarbons/alcohols (FEC2+) could be achieved in ECR by adjusting the surface metal components and the applied potential. In suitable conditions, FEC2+ and current density could be as high as 75% and 40 mA/cm2, respectively. Compared with the Cu catalyst, the Cu/Zn IMCs have a lower interfacial charge transfer resistance and a larger electrochemically active surface area (ECSA), which accelerate the reaction. Moreover, the *CO formed on Zn sites can move to Cu sites due to its weak binding with *CO, and thus enhance the C–C coupling on the Cu surface to form C2+ products.

关键词: carbon dioxide electroreduction     electrochemistry     co-electrodeposition     intermetallic catalysts     value-added chemicals    

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

《化学科学与工程前沿(英文)》 2021年 第15卷 第1期   页码 138-147 doi: 10.1007/s11705-020-1935-8

摘要: Effects of NaI as an additive on electrodeposition of Al coatings in AlCl -NaCl-KCl (80-10-10 wt-%) molten salts electrolyte at 150°C were investigated by means of cyclic voltammetry, chronopotentiometry, scanning electron microscopy and X-ray diffraction (XRD). Results reveal that addition of NaI in the electrolyte intensifies cathodic polarization, inhibits growth of Al deposits and increases number density of charged particles. The electrodeposition of Al coatings in the AlCl -NaCl-KCl molten salts electrolyte proceeds via three-dimensional instantaneous nucleation which however exhibits irrelevance with NaI. Galvanostatic deposition results indicate that NaI could facilitate the formation of uniform Al deposits. A compact coating consisting of Al deposits with an average particle size of 3 μm was obtained at a current density of 50 mA∙cm in AlCl -NaCl-KCl molten salts electrolyte with 10 wt-% NaI. XRD analysis confirmed that NaI could contribute to the formation of Al coating with a preferred crystallographic orientation along (220) plane.

关键词: NaI     additive     electrodeposition     molten salts     Al coating    

电沉积Mo和Mo-Co合金纳米线用于互联电阻的电阻率改性 Article

Jun Hwan Moon, Taesoon Kim, Youngmin Lee, Seunghyun Kim, Yanghee Kim, Jae-Pyoung Ahn, Jungwoo Choi, Hyuck Mo Lee, Young Keun Kim

《工程(英文)》 2024年 第32卷 第1期   页码 128-138 doi: 10.1016/j.eng.2023.07.017

摘要:

Achieving historically anticipated improvement in the performance of integrated circuits is challenging, due to the increasing cost and complexity of the required technologies with each new generation. To overcome this limitation, the exploration and development of novel interconnect materials and processes are highly desirable in the microelectronics field. Molybdenum (Mo) is attracting attention as an advanced interconnect material due to its small resistivity size effect and high cohesive energy; however, effective processing methods for such materials have not been widely investigated. Here, we investigate the electrochemical behavior of ions in the confined nanopores that affect the electrical properties and microstructures of nanoscale Mo and Mo–Co alloys prepared via template-assisted electrodeposition. Additives in an electrolyte allow the deposition of extremely pure metal materials, due to their interaction with metal ions and nanopores. In this study, boric acid and tetrabutylammonium bisulfate (TBA) were added to an acetate bath to inhibit the hydrogen evolution reaction. TBA accelerated the reduction of Mo at the surface by inducing surface conduction on the nanopores. Metallic Mo nanowires with a 130 nm diameter synthesized through high-aspect-ratio nanopore engineering exhibited a resistivity of (63.0 ± 17.9) μΩ·cm. We also evaluated the resistivities of Mo–Co alloy nanowires at various compositions toward replacing irreducible conventional barrier/liner layers. An intermetallic compound formed at an Mo composition of 28.6 at%, the resistivity of the Mo–Co nanowire was (58.0 ± 10.6) μΩ·cm, indicating its superior electrical and adhesive properties in comparison with those of conventional barriers such as TaN and TiN. Furthermore, density functional theory and non-equilibrium Green’s function calculations confirmed that the vertical resistance of the via structure constructed from Mo-based materials was 21% lower than that of a conventional Cu/Ta/TaN structure.

关键词: Molybdenum     Molybdenum–cobalt     Interconnect     Microstructure     Electrodeposition     Density functional theory    

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

《化学科学与工程前沿(英文)》 2022年 第16卷 第3期   页码 376-383 doi: 10.1007/s11705-021-2062-x

摘要: To realize renewable energy conversion, it is important to develop low-cost and high-efficiency electrocatalyst for oxygen evolution reaction. In this communication, a novel bijunction CoS/CeO2 electrocatalyst grown on carbon cloth is prepared by the interface engineering. The interface engineering of CoS and CeO2 facilitates a rapid charge transfer from CeO2 to CoS. Such an electrocatalyst exhibits outstanding electrocatalytic activity with a low overpotential of 311 mV at 10 mA∙cm−2 and low Tafel slope of 76.2 mV∙dec–1, and is superior to that of CoS (372 mV) and CeO2 (530 mV) counterparts. And it has long-term durability under alkaline media.

关键词: interface engineering     CoS/CeO2     electrodeposition     electrocatalyst     oxygen evolution reaction    

Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths

Hanbin Zheng, Christine Picard, Serge Ravaine

《化学科学与工程前沿(英文)》 2018年 第12卷 第2期   页码 247-251 doi: 10.1007/s11705-018-1710-2

摘要: Nanostructured metal surfaces have been known to exhibit properties that deviate from that of the bulk material. By simply modifying the texture of a metal surface, various unique optical properties can be observed. In this paper, we present a simple two step electrochemical process combining electrodeposition and anodization to generate black gold surfaces. This process is simple, versatile and up-scalable for the production of large surfaces. The black gold films have remarkable optical behavior as they absorb more than 93% of incident light over the entire visible spectrum and also exhibit no specular reflectance. A careful analysis by scanning electron microscopy reveals that these unique optical properties are due to their randomly rough surface, as they consist in a forest of dendritic microstructures with a nanoscale roughness. This new type of black films can be fabricated to a large variety of substrates, turning them to super absorbers with potential applications in photovoltaic solar cells or highly sensitive detectors and so on.

关键词: nanostructuration     light absorption     coating     gold     electrodeposition     anodization    

Decoration of vertically aligned TiO

Heba ALI, N. ISMAIL, M. S. AMIN, Mohamed MEKEWI

《能源前沿(英文)》 2018年 第12卷 第2期   页码 249-258 doi: 10.1007/s11708-018-0547-1

摘要: WO decorated photoelectrodes of titanium nanotube arrays (W-oxide TNTAs) were synthesized via a two-step process, namely, electrochemical oxidation of titanium foil and electrodeposition of W-oxide for various interval times of 1, 2, 3, 5, and 20 min to improve the photoelectrochemical performance and the amount of hydrogen generated. The synthesized photoelectrodes were characterized by various characterization techniques. The presence of tungsten in the modified TNTAs was confirmed using energy dispersive X-ray spectroscopy (EDX). Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscope (HRTEM) proved the deposition of W-oxide as small particles staked up on the surface of the tubes at lower deposition time whereas longer times produced large and aggregate particles to mostly cover the surface of TiO nanotubes. Additionally, the incorporation of WO resulted in a shift of the absorption edge toward visible light as confirmed by UV-Vis diffuse reflectance spectroscopy and a decrease in the estimated band gap energy values hence, modified TNTAs facilitated a more efficient utilization of solar light for water splitting. From the photoelectrochemical measurement data, the optimal photoelectrode produced after 2 min of deposition time improved the photo conversion efficiency and the hydrogen generation by 30% compared to that of the pure TNTA.

关键词: titanium dioxide nanotube arrays     potentiostaticanodization     electrodeposition method     tungsten oxide     photoelectrochemical water splitting    

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

《能源前沿(英文)》 2023年 第17卷 第3期   页码 428-445 doi: 10.1007/s11708-023-0865-9

摘要: In this work, using fractured shale cores, isothermal adsorption experiments and core flooding tests were conducted to investigate the performance of injecting different gases to enhance shale gas recovery and CO2 geological storage efficiency under real reservoir conditions. The adsorption process of shale to different gases was in agreement with the extended-Langmuir model, and the adsorption capacity of CO2 was the largest, followed by CH4, and that of N2 was the smallest of the three pure gases. In addition, when the CO2 concentration in the mixed gas exceeded 50%, the adsorption capacity of the mixed gas was greater than that of CH4, and had a strong competitive adsorption effect. For the core flooding tests, pure gas injection showed that the breakthrough time of CO2 was longer than that of N2, and the CH4 recovery factor at the breakthrough time (RCH4) was also higher than that of N2. The RCH4 of CO2 gas injection was approximately 44.09%, while the RCH4 of N2 was only 31.63%. For CO2/N2 mixed gas injection, with the increase of CO2 concentration, the RCH4 increased, and the RCH4 for mixed gas CO2/N2 = 8:2 was close to that of pure CO2, about 40.24%. Moreover, the breakthrough time of N2 in mixed gas was not much different from that when pure N2 was injected, while the breakthrough time of CO2 was prolonged, which indicated that with the increase of N2 concentration in the mixed gas, the breakthrough time of CO2 could be extended. Furthermore, an abnormal surge of N2 concentration in the produced gas was observed after N2 breakthrough. In regards to CO2 storage efficiency (Sstorage-CO2), as the CO2 concentration increased, Sstorage-CO2 also increased. The Sstorage-CO2 of the pure CO2 gas injection was about 35.96%, while for mixed gas CO2/N2 = 8:2, Sstorage-CO2 was about 32.28%.

关键词: shale gas     gas injection     competitive adsorption     enhanced shale gas recovery     CO2 geological storage    

CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2

Kechao Zhao,Zhenhua Li,Li Bian

《化学科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 273-280 doi: 10.1007/s11705-016-1563-5

摘要: A series of Mn-promoted 15 wt-% Ni/Al O catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al O catalysts for CO methanation and the co-methanation of CO and CO in a fixed-bed reactor was investigated. The catalysts were characterized by N physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and high-resolution transmission electron microscopy. The presence of Mn increased the number of CO adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al O catalysts had improved CO methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO conversion was achieved with the 1.71Mn-Ni/Al O catalyst. The co-methanation tests on the 1.71Mn-Ni/Al O catalyst indicated that adding Mn markedly enhanced the CO methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.

关键词: Mn promotion     nickel catalysts     CO2 methanation     co-methanation of CO and CO2    

An investigation of the CHOH and CO selectivity of CO hydrogenation over Cu–Ce–Zr catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 950-962 doi: 10.1007/s11705-022-2162-2

摘要: A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( XCO2 = 5.4%–15.6%) and CH3OH selectivity ( SCH3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

关键词: CO2 hydrogenation     Cu–Ce–Zr     hydroxyls     CO/CH3OH selectivity    

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

《化学科学与工程前沿(英文)》 2022年 第16卷 第7期   页码 1139-1148 doi: 10.1007/s11705-021-2111-5

摘要: The solubility of Pd(NO3)2 in water is moderate whereas it is completely soluble in diluted HNO3 solution. Pd/MIL-101(Cr) and Pd/MIL-101-NH2(Cr) were synthesized by aqueous solution of Pd(NO3)2 and Pd(NO3)2 solution in dilute HNO3 and used for CO oxidation reaction. The catalysts synthesized with Pd(NO3)2 solution in dilute HNO3 showed lower activity. The aqueous solution of Pd(NO3)2 was used for synthesis of mono-metal Ni, Pd and bimetallic PdNi nanoparticles with various molar ratios supported on MOF. Pd70Ni30/MIL-101(Cr) catalyst showed higher activity than monometallic counterparts and Pd+ Ni physical mixture due to the strong synergistic effect of PdNi nanoparticles, high distribution of PdNi nanoparticles, and lower dissociation and desorption barriers. Comparison of the catalysts synthesized by MIL-101(Cr) and MIL-101-NH2(Cr) as the supports of metals showed that Pd/MIL-101-NH2(Cr) outperforms Pd/MIL-101-(Cr) because of the higher electron density of Pd resulting from the electron donor ability of the NH2 functional group. However, the same activities were observed for Pd70Ni30/MIL-101(Cr) and Pd70Ni30/MIL-101-NH2(Cr), which is due to a less uniform distribution of Pd nanoparticles in Pd70Ni30/MIL-101-NH2(Cr) originated from amorphization of MIL-101-NH2(Cr) structure during the reduction process. In contrast, Pd70Ni30/MIL-101(Cr) revealed the stable structure and activity during reduction and CO oxidation for a long time.

关键词: CO oxidation     heterogeneous catalysis     metal-organic framework     NH2 functional group     PdNi    

Reduction potential of the energy penalty for CO capture in CCS

《能源前沿(英文)》 2023年 第17卷 第3期   页码 390-399 doi: 10.1007/s11708-023-0864-x

摘要: CO2 capture and storage (CCS) has been acknowledged as an essential part of a portfolio of technologies that are required to achieve cost-effective long-term CO2 mitigation. However, the development progress of CCS technologies is far behind the targets set by roadmaps, and engineering practices do not lead to commercial deployment. One of the crucial reasons for this delay lies in the unaffordable penalty caused by CO2 capture, even though the technology has been commonly recognized as achievable. From the aspects of separation and capture technology innovation, the potential and promising direction for solving this problem were analyzed, and correspondingly, the possible path for deployment of CCS in China was discussed. Under the carbon neutral target recently proposed by the Chinese government, the role of CCS and the key milestones for deployment were indicated.

关键词: CO2 capture and storage (CCS)     CO2 separation     energy penalty    

A coal-fired power plant integrated with biomass co-firing and CO capture for zero carbon emission

《能源前沿(英文)》 2022年 第16卷 第2期   页码 307-320 doi: 10.1007/s11708-021-0790-8

摘要: A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO2 capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper. Based on a 660 MW supercritical coal-fired power plant, the thermal performance, emission performance, and economic performance of the proposed scheme are evaluated. In addition, a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system. The results show that when the biomass mass mixing ratio is 15.40% and the CO2 capture rate is 90%, the CO2 emission of the coal-fired power plant can reach zero, indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants. The net thermal efficiency decreases by 10.31%, due to the huge energy consumption of the CO2 capture unit. Besides, the cost of electricity (COE) and the cost of CO2 avoided (COA) of the proposed system are 80.37 $/MWh and 41.63 $/tCO2, respectively. The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO2 to 2.40 GJ/ tCO2, the efficiency penalty is reduced to 8.67%. This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry.

关键词: coal-fired power plant     biomass co-firing     CO2 capture     zero carbon emission     performance evaluation    

以净零排放为目标的封存驱动型CO2提高采收率方法 Article

刘月亮, 芮振华

《工程(英文)》 2022年 第18卷 第11期   页码 79-87 doi: 10.1016/j.eng.2022.02.010

摘要: 可通过驱油过程将CO2封存在油藏地质体中,因此,CO2驱油与封存被视为降低CO2排放的重要手段之一。本研究提出了一种新型的CO2提高采收率(EOR)方法,即封存驱动型CO2提高采收率,其主要目标是通过在油藏中封存尽可能多的CO2来实现CO结果表明,DME可提高CO2在原油中的溶解度,有利于CO2的溶解封存;可抑制因CO2的抽提作用造成的原油轻质组分“逃逸&rdquo封存驱动型CO2 EOR方法在提高波及效率方面优于传统的CO2 EOR,尤其是在采油后期更为明显;同时,封存驱动型CO2 EOR比传统的此外,通过封存驱动型CO2 EOR封存的CO2量远超采出原油燃烧产生的碳排放总量。

关键词: CO2 EOR     CO2净排放量     二甲醚     封存驱动型CO2 EOR     CO2封存    

离岸碳捕集利用与封存技术体系研究

李姜辉,李鹏春,李彦尊,童峰

《中国工程科学》 2023年 第25卷 第2期   页码 173-186 doi: 10.15302/J-SSCAE-2023.07.015

摘要:

离岸碳捕集、利用与封存(CCUS)技术是沿海国家或地区通过工程方式为实现CO2减排而发展起来的解决方案与技术体系;相对于陆上离岸CCUS技术指从沿海大型或近海碳排放源捕集CO2,加压并运输至离岸封存平台后注入海底地质储层中,实现CO2与大气永久隔离或利用其生产价值产品的过程。本文概要回顾了全球及我国离岸CCUS技术的发展需求与产业现状,分析了发展离岸CCUS的技术性和社会性价值;梳理总结了代表性的离岸CCUS技术发展路线及其态势,如CO2工厂捕集、CO2管道运输、CO2海底咸水层封存与驱油利用、CO2化学利用以及其他技术架构。

关键词: 离岸碳捕集、利用与封存;CO2捕集;CO2运输;CO2封存;CO2利用;沿海地区;近海沉积盆地    

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

《化学科学与工程前沿(英文)》 2010年 第4卷 第4期   页码 476-480 doi: 10.1007/s11705-010-0512-y

摘要: A co-precipitation method was employed to prepare Ni/Al O -ZrO , Co/Al O -ZrO and Ni-Co/Al O -ZrO catalysts. Their properties were characterized by N adsorption (BET), thermogravimetric analysis TGA , temperature-programmed reduction (TPR), temperature-programmed desorption (CO -TPD), and temperature-programmed surface reaction (CH -TPSR and CO -TPSR). Ni-Co/Al O -ZrO bimetallic catalyst has good performance in the reduction of active components Ni, Co and CO adsorption. Compared with mono-metallic catalyst, bimetallic catalyst could provide more active sites and CO adsorption sites (C+ CO = 2CO) for the methane-reforming reaction, and a more appropriate force formed between active components and composite support (SMSI) for the catalytic reaction. According to the CH -CO -TPSR, there were 80.9% and 81.5% higher CH and CO conversion over Ni-Co/Al O -ZrO catalyst, and its better resistance to carbon deposition, less than 0.5% of coke after 4 h reaction, was found by TGA. The high activity and excellent anti-coking of the Ni-Co/Al O -ZrO catalyst were closely related to the synergy between Ni and Co active metal, the strong metal-support interaction and the use of composite support.

关键词: Ni-Co bimetallic catalyst     composite support     CH4 reforming with CO2    

标题 作者 时间 类型 操作

Electrochemical CO reduction to C products over CuZn intermetallic catalysts synthesized by electrodeposition

期刊论文

Effects of additive NaI on electrodeposition of Al coatings in AlCl

Tianyu Yao, Haiyan Yang, Kui Wang, Haiyan Jiang, Xiao-Bo Chen, Hezhou Liu, Qudong Wang, Wenjiang Ding

期刊论文

电沉积Mo和Mo-Co合金纳米线用于互联电阻的电阻率改性

Jun Hwan Moon, Taesoon Kim, Youngmin Lee, Seunghyun Kim, Yanghee Kim, Jae-Pyoung Ahn, Jungwoo Choi, Hyuck Mo Lee, Young Keun Kim

期刊论文

Interface engineering for enhancing electrocatalytic oxygen evolution reaction of CoS/CeO heterostructures

期刊论文

Nanostructured gold films exhibiting almost complete absorption of light at visible wavelengths

Hanbin Zheng, Christine Picard, Serge Ravaine

期刊论文

Decoration of vertically aligned TiO

Heba ALI, N. ISMAIL, M. S. AMIN, Mohamed MEKEWI

期刊论文

CO, N, and CO/N mixed gas injection for enhanced shale gas recovery and CO geological storage

期刊论文

CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2

Kechao Zhao,Zhenhua Li,Li Bian

期刊论文

An investigation of the CHOH and CO selectivity of CO hydrogenation over Cu–Ce–Zr catalysts

期刊论文

Conversion of CO into CO by high active and stable PdNi nanoparticles supported on a metal-organic framework

期刊论文

Reduction potential of the energy penalty for CO capture in CCS

期刊论文

A coal-fired power plant integrated with biomass co-firing and CO capture for zero carbon emission

期刊论文

以净零排放为目标的封存驱动型CO2提高采收率方法

刘月亮, 芮振华

期刊论文

离岸碳捕集利用与封存技术体系研究

李姜辉,李鹏春,李彦尊,童峰

期刊论文

Ni-Co bimetallic catalyst for CH

Xiaohong LI, Jun AI, Wenying LI, Dongxiong LI

期刊论文